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This paper considers the one-dimensional flow of vapor between two liquid surfaces due to evaporation
and condensation taking into account diffusion through a noncondensable gas and nonequilibrium inter-
facial kinetics. An explicit relationship is developed for the mass flux J as a function of the characteristic
mole ratio of noncondensable gas X, and several simplifications are made to arrive at an effective heat
transfer coefficient. A characteristic mole ratio Xc is also identified that demarcates the transition to a
kinetically-limited regime when X � Xc from a diffusively-limited regime when X � Xc. Numerical
results obtained over a wide range of parameters show that even with a small amount of noncondensable
gas, the interfacial temperature drop can be quite significant primarily because of diffusional resistance,
an observation that has important practical implications, especially in the field of cryogenic fluid storage.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Evaporation and condensation in the presence of a noncondens-
able gas is an important phenomenon with applications in several
key technologies involving both ground-based and space-bound
cryogenic storage tanks, phase separators and condensing heat
exchangers [1]. There is a great deal of interest in knowing how
the presence of a noncondensable gas affects the mass and heat
transfer rates in such systems. This is of considerable importance
to the design of space-based cryogenic storage tanks since these
tanks are typically pressurized with helium to aid in the extraction
of liquid propellant during engine startups. Under long-term stor-
age conditions, variations in noncondensable concentrations could
give rise to interfacial temperature gradients that are large enough
to instigate surface-tension driven Marangoni convection. This ef-
fect could be favorably exploited in certain circumstances to pro-
vide a passive alternative to the inefficient forced mixing that is
traditionally used to disrupt thermal stratification.

The effect of a noncondensable gas in the context of cryogenic
fluid storage was studied very early on by Clark [1]. Solutions to
one-dimensional heat conduction and mass diffusion equations
were used to determine the interfacial temperature in the presence
of a noncondensable gas. It was found that the condensation rate of
oxygen was greatly reduced by the presence of the noncondens-
ll rights reserved.
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able gas helium. Subsequent work by Minkowycz and Sparrow
[2] provided a much more comprehensive treatment of steam con-
densation onto an isothermal vertical plate with air as the noncon-
densable gas including the effects of superheating, free convection,
mass diffusion, thermal diffusion and interfacial resistance. It was
shown that even small amounts of noncondensable gas could sig-
nificantly alter the heat transfer rate. This effect was shown to be
almost entirely due to the diffusional resistance of the gas–vapor
boundary layer at the interface. The interfacial resistance due to
nonequilibrium kinetic effects was found to have a negligible
effect.

More recent treatments can be broadly divided into those
employing kinetic theory, irreversible thermodynamics or statisti-
cal rate theory to derive expressions for the interfacial mass and
energy fluxes. Kinetic models of evaporation and condensation
are based upon various approximate or numerical solutions of
the Boltzmann kinetic equation. Schrage [3] obtains a relatively
simple solution for pure vapor by assuming that its velocity distri-
bution function takes the form of a perturbed Maxwellian with a
single correction factor to account for the drift velocity of the evap-
orating or condensing vapor. The classical Hertz–Knudsen formula-
tion does not account for this drift velocity since it is based solely
upon equilibrium thermodynamics that assumes the bulk vapor is
at rest. Labuntsov and Kryukov [4] developed a more sophisticated
kinetic approach, although it is still limited to the case of pure va-
por, by using a discontinuous, four-moment approximation to the
velocity distribution function. Other studies [5–8] have extended
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Nomenclature

A dimensionless parameter characterizing thermal
boundary layer thickness, A ¼ Ja0cpvd=km

B dimensionless parameter characterizing steepness of
saturation pressure relationship, B ¼ Lmv=RT l0

cp specific heat at constant pressure
d distance between evaporating and condensing inter-

faces
D mass diffusion coefficient
DT thermal diffusion coefficient
E energy flux
h enthalpy
J mass flux
J0 dimensionless mass flux, J0 ¼ J=Ja0
Ja absolute (maximum) rate of evaporation
J0min minimum diffusive mass flux, J0min ¼ XcDp0s
k thermal conductivity
L latent heat of vaporization
m molecular weight
p pressure
�p average pressure or mean of boundary pressures
p0 dimensionless pressure, p0 ¼ p=ps0
Dp pressure drop between evaporating and condensing

interfaces, Dp ¼ p0 � pd
~pg0 approximate noncondensable gas pressure at evaporat-

ing interface, ~pg0 ¼ �qgRT l0=mg

q heat flux
qmin minimum heat flux required to sustain specified liquid

temperature drop, qmin ¼ ðjþ kmÞDT l=d
R ideal gas constant
T temperature
T 0 dimensionless temperature, T 0 ¼ T=T l0

�T average temperature
DT temperature drop between evaporating and condensing

interfaces, DT ¼ T0 � Td
X approximate mole ratio of noncondensable gas to vapor,

X ¼ ~pg0=ps0 ¼ �qgRT l0=mgps0
Xc critical mole ratio for determining the relative impor-

tance of diffusive and kinetic effects, Xc ¼ mvDmps0=

RdJa0T l0
z distance from evaporating interface
z0 dimensionless distance, z0 ¼ z=d

Greek Symbols
a accommodation coefficient
aT thermal diffusion factor
j effective thermal conductivity due to mass transfer,

j ¼ L2m2
vDmps0=R2T3

l0
x vapor mass fraction
q mass density
�q average mass density

Subscripts
0 pertaining to evaporating interface at z ¼ 0
b normal boiling point
c critical
d pertaining to condensing interface at z ¼ d
g noncondensable gas
l liquid
m vapor–gas mixture
r reference
s saturation
v vapor
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this approach to account for noncondensable gas effects and have
shown that even a trace amount of noncondensable gas can have a
significant effect on the condensation rate.

The methods of irreversible thermodynamics have also been
used [9–11] to derive alternative expressions for the interfacial
fluxes that involve a number of undetermined phenomenological
coefficients, which can be estimated from kinetic theory [12,13],
molecular dynamics simulations [14] or by comparison with
experimental measurements [11]. This approach has generally
shown good agreement with experimental measurements if the
coefficients are chosen properly [15,16].

The recent evaporation and condensation experiments of Fang
and Ward [17,18] and Ward and Stanga [19] show larger temper-
ature jumps across the interface than previously expected (up to
7:8K in some cases). In order to explain these results, they have
proposed an alternative approach known as statistical rate theory
(SRT) that is based upon the quantum mechanical concept of tran-
sitional probability [20]. However, as pointed out by Bond and
Struchtrup [15,16], although SRT does provide good predictive
ability for the mass flux, it is still an incomplete theory because
it does not yet provide an expression for the interfacial heat flux
required for a complete solution. They also show that the linear-
ized SRT mass flux is equivalent to the mass flux expression pro-
vided by irreversible thermodynamics. They conclude that since
SRT and irreversible thermodynamics yield essentially the same re-
sults, the nonlinear SRT expression does not provide any significant
additional predictive capability.

Bond [15] also shows that all three approaches (kinetic theory,
irreversible thermodynamics and SRT) predict mass fluxes that
agree with experimental measurements [17–19] as long as the
phenomenological coefficients are chosen appropriately. The irre-
versible thermodynamics energy flux also closely predicts the
interfacial temperature jump and direction. The kinetic model of
Schrage [3] is unable to predict the correct temperature jump un-
less it is augmented by a velocity-dependent condensation
coefficient.

The current paper is concerned with the flow of vapor be-
tween two flat liquid surfaces held at different temperatures
with noncondensable gas in the intervening vapor region. Our
approach is based upon the original analysis of Plesset [21] ex-
cept that we also include the effects of vapor diffusion through
a noncondensable gas, and we have selected the kinetic theory
of Schrage [3] to account for nonequilibrium interfacial effects
instead of the Hertz–Knudsen relation. Since this paper mainly
focuses on the diffusive effects of the noncondensable gas, the
Schrage [3] model was deemed to be suitable for now. Future
work will incorporate a more comprehensive kinetic model such
as Pong and Moses [5] that does directly take into account non-
condensable gas effects. The bulk vapor region is treated from a
continuum point of view and kinetic effects are included only
by modifying the interfacial boundary conditions. One-dimen-
sional balances of energy and mass result in several useful rela-
tionships between the rate of mass transfer, the mole fraction
of noncondensable gas, and the imposed interfacial temperature
drop. Simplified engineering correlations are obtained by con-
sidering various limiting cases. Our analysis also determines
when a transition from a diffusion-limited regime to a kineti-
cally-limited regime will occur by identifying a critical mole ra-
tio of noncondensable gas. Numerical results are presented for
case studies typically encountered in the area of space-based
and ground-based cryogenic storage of propellant or life-sup-
port fluids.
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2. Mathematical model

Consider two flat liquid–vapor interfaces at different tempera-
tures separated by a distance d with a mixture of vapor and non-
condensable gas in the intervening gap as shown in Fig. 1. The
interfacial temperature difference drives a flow of vapor between
the evaporating interface at z ¼ 0 and the condensing interface at
z ¼ d, where z is the perpendicular distance from the evaporating
interface. By enforcing mass and energy balances through the va-
por gap while taking into account the diffusion of vapor through
the noncondensable gas, it is possible to derive a simple implicit
relationship for the vapor mass flux J as a function of the imposed
liquid temperature drop.

For the sake of generality, it is important to distinguish between
the temperature on the liquid and vapor sides of each interface
since they can, in general, be different when kinetic effects become
important. For the evaporating interface at z ¼ 0, let T l0 and Tv0 be
the temperatures on the liquid and vapor side, respectively. Like-
wise, let T ld and Tvd be the respective liquid and vapor tempera-
tures for the condensing interface at z ¼ d. Let pv0 and pvd denote
the interfacial vapor pressures and ps0 and psd the equilibrium sat-
uration pressures corresponding to T l0 and T ld, respectively.

2.1. Properties of the vapor–gas mixture

Assuming ideal gas behavior, the total pressure pm at any point
within the vapor–gas mixture is given by the sum of the vapor and
gas partial pressures,

pm ¼ pv þ pg; ð1Þ

where pv is the partial vapor pressure and pg is the partial pressure
of the noncondensable gas. Let the average total pressure �p be de-
fined by �p ¼ d�1 R d

0 pm dz. For the problem at hand, it is assumed that
the hydrostatic, inertial and viscous pressure scales are many orders
of magnitude less than the total pressure, ðpm � �pÞ=�pj j � 1, so that
the total pressure can simply be regarded as a constant equal to
its average value, i.e. pm � �p. Plesset [21] also showed that this
assumption is valid as long as the flow velocity is much less than
the speed of sound.

The vapor and noncondensable gas each satisfy a separate equa-
tion of state at the common temperature Tv (the temperature of
the vapor and noncondensable gas are assumed to be equal),

qv ¼
mvpv

RTv
; ð2Þ

qg ¼
mgpg

RTv
; ð3Þ

where mv and mg are the molar masses of the vapor and gas mole-
cules, respectively, and R is the ideal gas constant. A combined
Fig. 1. The one-dimensional model used here to study mass transfer between an
evaporating and condensing interface with some noncondensable gas in between.
equation of state in terms of these densities can be obtained by
substituting Eqs. (2) and (3) into Eq. (1) assuming pm � �p,

�p
RTv
¼ qv

mv
þ

qg

mg
: ð4Þ

If we define the total mixture density qm by

qm ¼ qv þ qg; ð5Þ

then we can define the vapor mass fraction x by,

x ¼ qv

qm
: ð6Þ

By rearranging Eq. (6), we get,

qv ¼ qmx; ð7Þ

and by substituting this back into Eq. (5) and solving for qg, we see
that,

qg ¼ qmð1�xÞ: ð8Þ

Substituting Eqs. (7) and (8) into Eq. (4) and solving for qm results in
a useful expression relating the total density to the average pres-
sure and vapor mass fraction,

qm ¼
�p

RTv

mvmg

ð1�xÞmv þxmg
: ð9Þ

Finally, substitution of Eq. (7) into Eq. (2) with qm given by Eq. (9)
results in,

pv ¼
mgx

mvð1�xÞ þmgx
�p: ð10Þ

Since pg ¼ �p� pv, the partial pressure of the noncondensable gas
can be written similarly as,

pg ¼
mvð1�xÞ

mvð1�xÞ þmgx
�p: ð11Þ
2.2. Equations governing mass and energy transfer through the vapor–
gas mixture

The vapor mass flux moving through the gap is defined by
J ¼ qvuv, where uv is the average velocity of the vapor molecules
with respect to either interface. If we define the mass-averaged
velocity um by um ¼ xuv þ ð1�xÞug, where ug is the average
velocity of the gas molecules, then J can be decomposed into two
contributions as follows, J ¼ qvum þ qvðuv � umÞ. The first term is
a convective contribution, and the second term is the diffusive
mass flux which, in general, is proportional to gradients of the
mass fraction, pressure and temperature. Since the total pressure
is constant, only gradients of mass fraction and temperature will
play any role, so we can write the diffusive term as
qvðuv � umÞ ¼ �qmDmdx=dz� DTdðln TÞ=dz, where Dm is the mass
diffusion coefficient for the vapor–gas mixture and DT is the ther-
mal diffusion coefficient. According to Bird [22], the ratio DT=qmDm

can be written as DT=qmDm ¼ aTxð1�xÞ, where aT is the thermal
diffusion factor, which experimental measurements have shown is
nearly independent of concentration for gas mixtures. Also, since
the gas is stagnant at steady state ðug ¼ 0Þ, we get um ¼ xuv so that
the convective term becomes qvum ¼ qvxuv ¼ xJ. By combining
all of these relationships, the expression for J becomes,

J ¼ �qmDm
1

1�x
dx
dz
þ aT

x
T

dT
dz

� �
: ð12Þ

Before going any further, however, the second term in this equation,
which is due to Soret (thermal) diffusion, will be neglected. This is
justified for two reasons. First, the value of the thermal diffusion
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factor aT is normally small for the gas mixtures of interest here. For
example, according to Hirschfelder [23], aT ¼ 0:14 for a He�H2

mixture at 46K. Additionally, in the next section a small tempera-
ture drop assumption will be invoked. The combined effect of these
two considerations will make the exclusion of the thermal diffusion
term justified in the context of this paper. In future work that does
not invoke the small temperature drop assumption, the Soret term
will be retained throughout the analysis to assess and characterize
its effects, especially in the thermal boundary layer that may devel-
op near the condensing interface at high evaporation (advective
mass transfer) rates.

By neglecting the thermal diffusion term, the mass flux expres-
sion simplifies to,

J ¼ �qmDm

1�x
dx
dz

: ð13Þ

Since J must be constant throughout the gap at steady state, the
solution for x can be obtained by solving the equation dJ=dz ¼ 0
after first substituting Eq. (9) for qm into Eq. (13), assuming Dm

and �p are constant. Once the solution for x is known, it can be
substituted back into Eq. (13), which can then be converted into
an expression in terms of partial pressure instead of x by making
use of Eq. (10) to arrive at the final expression for the mass flux,

J ¼
�pmvDm

R�Tvd
ln

�p� pvd

�p� pv0

� �
; ð14Þ

where �Tv is the average vapor temperature defined by �Tv �
d�1 R d

0 Tvdz.
The vapor temperature Tv can be found by requiring that the net

energy flux E through the gap, consisting of both conductive and
convective contributions (but neglecting compressible work and
the Dufour effect), be constant at steady state. Assuming the vapor
enthalpy hv has the ideal-gas form hv ¼ cpvðTv � Tv0Þ þ hv0, where
cpv and hv0 are constants, this can be represented as

dE
dz
¼ d

dz
�km

dTv

dz
þ JcpvðTv � Tv0Þ

� �
¼ 0; ð15Þ

where km is the mixture thermal conductivity. Since J is constant at
steady state, this equation can be readily integrated across the va-
por gap subject to the boundary conditions Tv ¼ Tv0 at z ¼ 0 and
Tv ¼ Tvd at z ¼ d (assuming constant kmÞ to yield the desired vapor
temperature solution,

Tv0 � Tv

DTv
¼

1� exp½ðJcpv=kmÞz�
1� exp½ðJcpv=kmÞd�

; ð16Þ

where DTv ¼ Tv0 � Tvd. This equation can be readily integrated to
obtained the average vapor temperature �Tv required in Eq. (14).

The average total pressure �p appearing in Eq. (14) can be found
by integrating Eq. (3) across the vapor gap from z ¼ 0 to z ¼ d,
resulting in the following constraint on �p,

�qg ¼
mgð�p� pv0Þ

Rd

Z d

0

1
Tv

�p� pv0

�p� pvd

� ��R z

0
ðTv=�TvdÞ dz

dz: ð17Þ

Thus, given the average gas density �qg, which is assumed to be a
known quantity, the total pressure �p can be found by satisfying
Eq. (17).

2.3. Kinetic boundary conditions at the interface

The link between the liquid and vapor interfacial tempera-
tures is provided by using an appropriate kinetic model of phase
change. Despite the plethora of kinetic models to choose from, it
was decided to use the simple but comprehensive kinetic model
first presented by Schrage [3], which assumes the vapor velocity
distribution takes the form of a perturbed Maxwellian distribu-
tion and then uses balances of mass, momentum and energy
across the Knudsen layer to determine the extent of the temper-
ature and pressure jumps across this layer in addition to deter-
mining the magnitude of the interfacial mass flux. The
relationships provided by this model are a little unwieldy in
their original form because they are written implicitly in para-
metric form. A more convenient form is obtained in Panzarella
[24] by simply rewriting them as explicit functions of the inter-
facial mass flux as follows,

pv

ps
¼ 3

4p
p
2
� J

Ja

� �
þ 5

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2
� J

Ja

� �2

� 2p
5

J2

J2
a

s
; ð18Þ

Tv

T l
¼ 4

5
þ 1

5
ps

pv
1� 2

p
J
Ja

� �� ��1

; ð19Þ

where ps is the equilibrium saturation pressure dependent upon the
liquid temperature and Ja is the absolute rate of evaporation defined
by,

JaðTÞ ¼ aps

ffiffiffiffiffiffiffiffiffiffiffiffi
mv

2pRT

r
; ð20Þ

where a is the accommodation coefficient (fraction of incident va-
por molecules that enter the liquid phase). An explicit expression
for the saturation pressure is given by the Clausius–Clapeyron
equation for an ideal gas,

psðT lÞ ¼ pr exp
Lmv

R
1
Tr
� 1

T l

� �� �
; ð21Þ

where Tr is the known saturation temperature at some reference
pressure pr and L is the latent heat of vaporization.

2.4. Dimensionless equations

If two liquid interfaces are separated by a distance d and main-
tained at the different temperatures T l0 and T ld, then the resulting
vapor mass flux J between them due to evaporation at one inter-
face and condensation at the other can be determined by simulta-
neously solving for the two unknowns J and �p from the implicit
relationships given by Eqs. (14) and (17). Additional relationships
between the liquid and vapor interfacial temperatures and pres-
sures are provided by Eqs. (18) and (19), which are derived from
a particular nonequilibrium kinetic theory. It should be noted that
this model could be extended very easily to make use of any other
nonequilibrium interfacial condition by simply replacing Eqs. (18)
and (19) by whatever relationships for the pressure and tempera-
ture discontinuities that would be provided by the alternative
treatment.

These equations can be written in dimensionless form by defin-
ing the scaled variables J0 ¼ J=Ja0 and �p0 ¼ �p=ps0, where Ja0 ¼ JaðT l0Þ.
Then, Eqs. (14) and (17) become,

J0 ¼
�p0

�T 0v
Xc ln

�p0 � p0vd
�p0 � p0v0

� �
; ð22Þ

X ¼ �p0 � p0v0

� � Z 1

0

1
T 0v

�p0 � p0v0
�p0 � p0vd

� ��R z0

0
T 0v=�T 0vð Þ dz0

dz0: ð23Þ

Here, X ¼ �qgRT l0=mgps0 is the characteristic mole ratio of noncon-
densable gas and Xc ¼ mvDmps0=RdJa0T l0 is a critical mole fraction.
The significance of these parameters and the reason for this naming
convention will become clear later on. Finally, z0 ¼ z=d is the dimen-
sionless distance from the evaporating interface ð0 6 z0 6 1Þ.

Similarly, the scaled vapor temperature T 0v ¼ Tv=T l0 and its aver-
age value �T 0v ¼ �Tv=T l0 satisfy the following dimensionless
equations,
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T 0vðz0Þ ¼ T 0v0 � DT 0v
1� eAJ0z0

1� eAJ0
; ð24Þ

�T 0v ¼ T 0v0 � DT 0v
1

1� eAJ0
þ 1

AJ0

� �
; ð25Þ

Z z0

0
T 0vdz0 ¼ T 0v0z0 � DT 0v

AJ0z0 þ 1� eAJ0z0

AJ0 1� eAJ0
� �

 !
; ð26Þ

where DT 0v ¼ T 0v0 � T 0vd, and A ¼ Ja0cpvd=km is another dimensionless
parameter. The boundary vapor temperatures are defined by
T 0v0 ¼ Tv0=T l0 and T 0vd ¼ Tvd=T l0 ¼ ðTvd=T ldÞT 0ld, where T 0ld ¼ T ld=T l0. Un-
like the liquid boundary temperatures, these are not constant but
functions of the mass flux rate J0 according to the dimensionless ver-
sion of Eq. (19),

T 0v0 ¼
4
5
þ 1

5p0v0
1� 2

p
J0

� �� ��1

; ð27Þ

T 0vd ¼ T 0ld
4
5
þ p0sd

5p0vd

1þ 2
p

J0

J0ad

� �� ��1

; ð28Þ

where J0ad ¼ Jad=Ja0 and p0sd ¼ psd=ps0 are given by,

J0ad ¼
Jad

Ja0
¼ p0sdffiffiffiffiffiffi

T 0ld
q ; ð29Þ

p0sd ¼ exp B 1� 1
T 0ld

� �� �
; ð30Þ

with Jad ¼ JaðT ldÞ and B ¼ Lmv=RT l0. The sign of J0 is reversed in Eq.
(28) because mass is condensing at that interface.

Finally, the dimensionless boundary vapor pressures are de-
fined by p0v ¼ pv0=ps0 and p0vd ¼ pvd=ps0 ¼ ðpvd=psdÞp0sd. They also de-
pend on J0 according to dimensionless versions of Eq. (18),

p0v0 ¼
3

4p
p
2
� J0

	 

þ 5

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2
� J0

	 
2
� 2p

5
J02

r
; ð31Þ

p0vd ¼ p0sd
3

4p
p
2
þ J0

J0ad

� �
þ 5

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2
þ J0

J0ad

� �2

� 2p
5

J02

J02ad

vuut
2
4

3
5: ð32Þ

Again, the sign of J0 is reversed in Eq. (32) because mass is condens-
ing at that interface.

Thus, the one-dimensional solution for the dimensionless mass
flux J0 depends in the most general case on exactly five dimension-
less parameters, J0 ¼ J0ðT 0ld;X;Xc;B;AÞ. The parameter X deserves
special attention since it is a direct measure of the amount of non-
condensable gas present. Even though the partial pressure of the
noncondensable gas varies from point to point within the vapor
gap, the quantity defined by ~pg0 ¼ �qgRT l0=mg is a constant that is
characteristic of this pressure. Indeed, ~pg0 can be regarded as the
pressure that would be exerted by the noncondensable gas on
the evaporating interface if its density at that location were equal
to the average gas density �qg. With this in mind, the parameter X
can be written more compactly as X ¼ ~pg0=ps0, and then it should
be evident why X is referred to as the ‘‘characteristic mole ratio”
of noncondensable gas with respect to the vapor.

3. Solution for small temperature drop

The dimensionless liquid temperature drop is defined by
DT 0l ¼ ðT l0 � T ldÞ=T l0 ¼ 1� T 0ld. When DT 0l

�� ��� 1, it follows that the
vapor temperature drop is also small, i.e. DT 0v

�� ��� 1. When
DT 0v
�� ��� 1, then to leading order, the terms proportional to DT 0v in
Eqs. (24) and (25) can be neglected with respect to the dominant
term T 0v0 for any value of A or J0. Then, both T 0v and its average value
�T 0v can be replaced by T 0v0 in Eq. (23). It is then possible to show that
Eqs. (22) and (23) simplify considerably and can be combined into
the single equation,
J0 ¼ Xc

X
�p0v þ

Dp0v
2

coth
Dp0v

2XT 0v0

� �� �
Dp0v
T 02v0

: ð33Þ

This is the small temperature drop approximation that will be used
throughout the remainder of this paper. The only assumption re-
quired to arrive at Eq. (33) is that DT 0l

�� ��� 1. No restriction on J0 or
any other parameter was involved. Thus, Eq. (33) is valid over the
entire range of mass flux from the kinetically-limited regime all
the way up to the diffusion-limited regime.

3.1. Diffusion-limited regime

If jJ0j � 1 (evaporative mass flux much less that its absolute ki-
netic limit), then we can assume that the liquid and vapor interfa-
cial temperatures are equal ðT 0v0 ¼ 1; T 0vd ¼ T 0ldÞ and that the vapor
boundary pressures can be replaced by the corresponding satura-
tion pressures ðp0v0 ¼ 1 and p0vd ¼ p0sdÞ. This also follows from setting
J0 ¼ 0 in Eqs. (27), (28), (31) and (32). Then, if we define
�p0s ¼ ðps0 þ psdÞ=2ps0 ¼ ð1þ p0sdÞ=2 and Dp0s ¼ ðps0 � psdÞ=ps0 ¼
1� p0sd, Eq. (33) reduces to an explicit expression for J0 in terms of
known parameters,

J0 ¼ Xc

X
�p0s þ

Dp0s
2

coth
Dp0s
2X

� �� �
Dp0s: ð34Þ

Since J0 increases as X ! 0, Eq. (34) is strictly valid only as long as X
does not get so small that the assumption jJ0j � 1 is violated. When
X � Dp0s

�� ��=2, cothðDp0s=2XÞ � 1 and Eq. (34) has the limiting behavior,

J0 � Xc

X
�p0s þ

Dp0s
�� ��

2

� �
Dp0s: ð35Þ

In order to satisfy the condition J0 � 1, the mole ratio must satisfy
the restriction,

X
Xc
� �p0s þ

Dp0s
�� ��

2

� �
Dp0s: ð36Þ

As long as this condition is satisfied, then we are in a diffusion-lim-
ited regime, and it is appropriate to use Eq. (34) to predict the mass
flux. Since �p0s � 1 and Dp0s 6 1, Eq. (36) is satisfied as long as X � Xc.
As will be shown later, for typical parameter values of hydrogen at
its normal boiling point, Xc � 10�6, so Eq. (34) is valid for most prac-
tical situations where the amount of noncondensable gas is not van-
ishingly small.

In the opposite extreme when X � Dp0s
�� ��=2; J0 approaches the

constant value J0min,

J0 � J0min ¼ XcDp0s: ð37Þ

In this limit, the vapor pressure is negligible when compared to the
noncondensable gas pressure. Again, Eq. (37) is only valid as long as
jJ0j ¼ XcDp0s

�� ��� 1. Because of the vanishingly small value of Xc, this
condition is also automatically satisfied under most normal condi-
tions. Therefore, Eq. (34) can be rewritten as,

J0

J0min

¼ 1
X

�p0s þ
Dp0s
2

coth
Dp0s
2X

� �� �
; ð38Þ

which is independent of the parameter Xc and, thus, depends on the
noncondensable gas only through the mole ratio X. Eq. (38) is valid
as long as X � Xc so that jJ0j � 1.

A uniformly-valid approximation to Eq. (38) that has the correct
limiting behavior given by Eq. (35) when X � Dp0s=2 and Eq. (37)
when X � Dp0s=2 is,

J0

J0min

¼
�p0s þ Dp0s

�� ��=2
X

þ 1: ð39Þ

The error of this approximation is greatest when X � Dp0s=2, but it is
relatively small when Dp0s

�� ��� 1 and goes to zero as Dp0s
�� ��! 0.
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Note that the dimensionless saturation pressure condition given
by Eq. (30) can be written in terms of DT 0l as,

p0sd ¼ exp
�BDT 0l
1� DT 0l

� �
: ð40Þ

Thus, if we assume that BDT 0l
�� ��� 1 in addition to DT 0l

�� ��� 1, then Eq.
(40) can be approximated by its first two terms in a Taylor series
expansion,

p0sd ¼ 1� BDT 0l; ð41Þ
and then Dp0s ¼ 1� p0sd ¼ BDT 0l and �p0s ¼ 1. Eq. (39) would then sim-
plify even further to,

J0

J0min

¼ 1
X
þ 1; ð42Þ

and Eq. (37) becomes J0min ¼ XcBDT 0l. Eq. (42) is very good approxi-
mation to Eq. (38) for any mass fraction X as long as Dp0s

�� ��� 1. It
could alternatively be written in terms of DT 0l directly as,

J0 ¼ 1
X
þ 1

� �
XcBDT 0l: ð43Þ
Table 1
Material properties of saturated hydrogen at its normal boiling point [25].

cpl=erg ðg KÞ�1 9:74� 107 cpv=erg ðg KÞ�1 1:23� 108

kl=erg ðcmsKÞ�1 10356 kv=erg ðcmsKÞ�1 1714
L=ergs�1 4:45� 109 mv=g mol�1 2.016
pb=atm 1.0 R=erg ðK molÞ�1 8:31� 107

ql=gcm�3 0.070668 qv=gcm�3 0.0013801
Tb=K 20.39 Tc=K 33.19
pc=atm 12.98
3.2. Kinetically-limited regime

In the limit as X ! 0 (pure vapor with no noncondensable gas),
we must have Dp0v ¼ OðXÞ in Eq. (33) in order for J0 to remain
bounded and non-zero. Thus, the term proportional to Dp0v in the
square brackets of Eq. (33) is negligible with respect to the other
term, and we get the following simpler relationship,

X
Xc

J0 ¼
�p0v
T 02v0

Dp0v: ð44Þ

Since we are now in a kinetically-limited regime, J0 is no longer neg-
ligible in Eqs. (31) and (32) and we cannot ignore the terms involv-
ing J0. However, instead of using the most general relationships, we
will only use their linear approximations given by,

p0v0 ¼ 1� 2
p

J0; ð45Þ

p0vd ¼ p0sd þ
2
p

J0; ð46Þ

where we have assumed Eq. (29) reduces to J0ad ¼ p0sd since T 0ld � 1
when the small temperature drop approximation is invoked. Eqs.
(45) and (46) are strictly only valid when jJ0j � 1, however, it is a
reasonable approximation even for evaporation rates (positive JÞ
up to the absolute limit. Since the rate of condensation must always
be equal to �J in this one-dimensional problem, the linear approx-
imation remains a good one even at the condensing interface.

By adding and subtracting Eqs. (45) and (46), we can write,

Dp0v ¼ Dp0s �
4
p

J0; ð47Þ

�p0v ¼ �p0s: ð48Þ

Through substitution of Eqs. (47) and (48) into Eq. (44) and assum-
ing T 0v0 ¼ 1 (from the small temperature drop approximation), Eq.
(44) can be solved for J0 with the result,

J0 ¼ p
4

Dp0s 1þ p
4

X
�p0sXc

� ��1

: ð49Þ

Note that in the pure vapor limit when X ¼ 0, the mass flux ap-
proaches a constant value given by,

J0 ¼ p
4

Dp0s: ð50Þ

This could also be obtained directly from Eq. (47) by setting Dp0v ¼ 0,
which is consistent with the pure-vapor, kinetic limit already dis-
cussed previously at the end of Section 2.2.
3.3. Uniformly-valid approximation

We have seen that Eq. (34) is a good approximation to Eq. (33)
when X=Xc � 1 and that Eq. (49) is a good approximation when
X=Xc � 1 and X � Dp0s

�� ��. However, as long as Dp0s
�� ��� 1, Eqs. (35)

and (49) are identical and there is an overlap region
Xc � X � Dp0s

�� �� where both approximations are equally valid.
Therefore, we can construct a uniformly-valid approximation to
Eq. (33) that determines J explicitly over the entire range of X=Xc

by merging Eqs. (34) and (49) into this single, semi-heuristic
equation,

J0

J0min

¼ 1
X þ 4Xc �p0s þ Dp0s

�� ��=2
� �

=p
�p0s þ

Dp0s
2

coth
Dp0s
2X

� �� �
: ð51Þ

Note that Eq. (51) has the correct (very close) limiting behavior
when X=Xc � 1 and X=Xc � 1. We should also note that Eq. (51)
places no restriction on Dp0s

�� �� when X=Xc � 1 since the mass flux
is diffusion-limited in that case. Eq. (51) can be further simplified
through the use of Eq. (39) to yield a good approximation for any X,

J0

J0min

¼
�p0s þ Dp0s

�� ��=2
X þ 4Xc �p0s þ Dp0s

�� ��=2
� �

=p
þ 1: ð52Þ

The error of this approximation is greatest when X � Dp0s
�� ��=2, but

the relative error is small when Dp0s
�� ��� 1 and goes to zero as

Dp0s
�� ��! 0.

4. Numerical results

In order to better illustrate the behavior of the evaporating/con-
densing system depicted in Fig. 1, a particular numerical example
is given here for liquid hydrogen pressurized by the noncondens-
able gas helium. Numerical solutions demonstrating the behavior
of this system will now be generated using the most general form
of the implicit small-temperature drop relationship given by Eq.
(33) and compared to the predictions of the explicit uniform
approximation given by Eq. (52). In order to accomplish this, esti-
mated values of the dimensionless parameters Xc and B are re-
quired. If we assume the operating conditions are close to the
normal boiling point of hydrogen, then T l0 ¼ Tb ¼ 20:39 K, and
we obtain values for the properties ps0 ¼ pb; L;mv and R from Table
1. An estimate of the absolute rate of evaporation,
Ja0 ¼ 13:94 g=cm2 s, is also obtained from Eq. (20) assuming a ¼ 1.

The mass diffusion coefficient Dm can be estimated from an
empirical formula for a binary mixture of gases at low to moderate
pressures given in Bird, Stewart and Lightfoot [22],

pDm

ðpcvpcgÞ
1=3ðTcvTcgÞ5=12ð1=mv þ 1=mgÞ1=2 ¼ a

Tffiffiffiffiffiffiffiffiffiffiffiffiffi
TcvTcg

p
 !b

; ð53Þ

where pcv;pcg and Tcv; Tcg are the critical pressures and tempera-
tures of the vapor and gas (in units of atm) and a ¼ 2:745� 10�4

and b ¼ 1:823 are empirically-determined constants. When the
noncondensable gas is helium, mg ¼ 4:003 g=mol; Tcg ¼ 5:195 K
and pcg ¼ 2:244 atm and from Eq. (53) we find that
Dm ¼ 0:0139 cm2=s for this mixture at the normal boiling point
temperature T ¼ 20:39 K of hydrogen.
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Using these property values and assuming an interfacial spacing
of d ¼ 1 cm, the dimensionless parameters take the values of
Xc ¼ 1:20� 10�6 and B ¼ 5:3. Consequently, the values Xc ¼ 10�6

and B ¼ 5 are used here to generate the baseline solutions to Eqs.
(33) and (52). The results are shown in Fig. 2a over a wide range
of mole ratio X for three different values of DT 0l. First, note the very
good agreement between the exact and approximate solutions,
which verifies that for this set of parameters, the simplified solu-
tion given by Eq. (52) is, indeed, a good approximation to Eq.
(33). The largest error occurs for the case with the largest DT 0l. It
is also clear that J0 approaches a constant both when X � Xc and
when X � 1.

When X � Xc, we are in a kinetically-limited regime and the
mass flux approaches the maximum constant value given by the
pure vapor limit of Eq. (50). When X � Xc, we are in a diffusion-
limited regime, where the mass flux is limited by how fast the
evaporating vapor can diffuse through the noncondensable gas.
In the diffusion-limited regime, there are two characteristic behav-
iors. First, when Xc � X � 1, the slope of the curve in Fig. 2a is
nearly equal to -1, reflecting the 1=X behavior of the mass flux. Sec-
ond, when X � 1, the mass flux approaches another constant value
given by Eq. (37) as the system becomes saturated with noncon-
densable gas. All of these limits are captured by Eq. (52). Note that
for a fixed value of X, we have the intuitive result that J0 increases
as DT 0l increases.

The mass flux approaches a constant when X � 1 because
x! 0 and the total density approaches a constant,
qm ! �pmg=RT l0 (assuming the small temperature drop approxima-
tion). However, qm is still proportional to �p which increases with-
out bound as X !1. As a result, the mass balance condition given
by dJ=dz ¼ 0 reduces to d2x=dz2 ¼ 0 by making use of Eq. (13),
which yields a linear mass fraction profile. The vapor mass fraction
Fig. 2. A plot of the dimensionless mass flux J0 as computed from Eq. (33) (solid line) or
DT 0l ¼ 0:1, (c) DT 0l with X ¼ 0:1, (d) DT 0l with Xc ¼ 10�6.
is related to the vapor partial pressure through Eq. (10), but since
�p� pv and pv � ps, they reduce to x0 ¼ mvps0=mg�p and
xd ¼ mvpsd=mg�p. Thus, dx=dz ¼ �mvDps=mg�pd, and if we substi-
tute all of this into Eq. (13), we find that J ¼ DmmvDps=RT l0d ¼Jmin

in this limit, which is exactly the same as J0minJa0, with J0min taken
from its definition in Eq. (37). Thus, the mass flux approaches a
constant value because the mass fraction profile becomes linear
when X � 1.

In Fig. 2b the evaporative mass flux is plotted for three different
values of Xc. Physically, for a fixed vapor composition and operat-
ing conditions, variations in Xc can be solely brought about by
using a different noncondensable gas (different diffusivity Dm) or
by moving the interfaces closer or farther apart (changing d). For
a fixed mole ratio X; J0 increases as Dm increases or d is decreased,
in accordance with physical intuition. Note that in all the cases pre-
sented here, the mass flux approaches the same constant value as
X ! 0 since this value represents a kinetic limit that is unaffected
by changes in the diffusivity. However, the transition to this con-
stant occurs at a smaller mass fraction as Xc decreases since the
transition to this kinetic regime occurs around X � Xc.

The mass flux J0 is plotted as a function of the temperature drop
DT 0l for several fixed values of X and Xc in Fig. 2c and d. Note that J0

has a nearly linear dependence on the temperature drop and that
the error of the simpler approximation provided by Eq. (52) in-
creases slightly as DT 0l increases.

When J0 is scaled by its minimum value J0min, all of the curves in
Fig. 2a collapse into a single curve as shown in Fig. 3. This shows
that most of the temperature dependence is captured by the
parameter J0min within this parameter range.

From a practical standpoint, it is unlikely that the evaporative
mass flux will ever approach its absolute kinetic limit for most nor-
mal circumstances because the heat flux required to sustain such a
Eq. (52) (dashed line) when B ¼ 5 as a function of (a) X with Xc ¼ 10�6, (b) X with



Fig. 3. A plot of (a) the dimensionless mass flux J0=J0min (scaled by the minimum mass flux) as a function of the relevant dimensionless parameters X and DT 0l with Xc ¼ 10�6,
(b) the relationship between the dimensionless saturation pressure drop Dp0s and liquid temperature drop DT 0l according to Eq. (40), a plot of the heat flux versus (c) mole ratio
X and (d) temperature gradient for a mixture of hydrogen and helium gas.
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large mass flux is prohibitively high. To show this explicitly, an en-
ergy balance across the liquid and vapor sides of the condensing
interface along with the temperature solution provided by Eq.
(16) can be used to obtain the following expression for the li-
quid-side conductive heat flux at that interface,

q ¼ qld ¼ LJ � km
dTv

dz

����
����

z¼0
þ cplDT lJ

¼ ðLþ cplDT lÞJ þ km
DTv

d
Jcpvd=km

expðJcpvd=kmÞ � 1
: ð54Þ

The last term in Eq. (54) represents the conductive contribution to
the vapor heat flux, which has a maximum value of kmDTv=d at
Jcpvd=km ¼ 0 and becomes smaller as Jcpvd=km increases. If we as-
sume that cplDT l � L (small temperature drop limit), then a good
engineering approximation to Eq. (54) that has the correct limiting
behavior as J ! 0 and J !1 is,

q ¼ LJ þ km
DTv

d
: ð55Þ

This equation indicates that the major contributors to the heat
flux are simply the latent heat of vaporization and conduction
through the vapor, which can become large as the interfaces
move closer together. If we further assume that differences in
the saturation pressures are relatively small, Dp0s � 1, (which
would not be true unless BDT 0l � 1 as shown in Fig. 3b) and that
J0
�� ��� 1 to ignore the interfacial temperature discontinuity, then
we can assume DTv ¼ DT l and substitute Eq. (43) for J into Eq.
(55), arriving at,

q ¼ j 1þ 1
X

� �
þ km

� �
DT l

d
; ð56Þ
where j is a parameter with the units of a thermal conductivity,

j ¼ LXcBJa0d
T l0

¼ L2m2
vDmps0

R2T3
l0

: ð57Þ

Note that j depends only on material properties and the operating
temperature. For most cases of engineering interest, j is the most
important parameter resulting from this analysis.

It is also possible to define an effective heat transfer coefficient
h for this process by writing Eq. (56) as q ¼ hDT l, with h defined by,

h ¼ j
d

1þ 1
X

� �
þ km

d
: ð58Þ

Note that h decreases as X increases, meaning a smaller heat flux is
required to maintain the same temperature drop as the amount of
noncondensable gas increases. Another way of stating this is that
the resistance to evaporation due to the presence of the noncon-
densable gas depends both on the amount of gas present (through
XÞ as well as on the ease by which the vapor molecules can diffuse
through that gas as measured by the parameter j (which is propor-
tional to the diffusivity DmÞ.

In the limit of large quantities of noncondensable gas
ðX !1Þ; q approaches the constant qmin given by,

qmin ¼ LJmin þ km
DT l

d
¼ ðjþ kmÞ

DT l

d
: ð59Þ

This is the minimum heat flux required to sustain the temperature
gradient DT l=d between the interfaces regardless of the amount of
the amount of noncondensable gas. In this context, j can be inter-
preted as an effective thermal conductivity due to mass transfer
since it plays exactly the same role as km. Thus, Eq. (56) can also
be written as,
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q ¼ qmin þ
j
X

DT l

d
: ð60Þ

The heat flux versus X required to sustain a specified liquid temper-
ature drop, as computed from Eq. (60), is shown in Fig. 3c assuming
the noncondensable gas is helium. Note that the heat flux ap-
proaches a minimum as X increases. Similar plots are shown in
Fig. 3d as a function of the temperature gradient.

Eq. (56) can be solved for the temperature gradient to yield,

DT l

d
¼ q

jð1þ X�1Þ þ km
: ð61Þ

This equation can be used to predict the expected temperature gra-
dient produced between evaporating and condensing sites for given
values of q and X. This is useful for practical problems where the
distribution of q near the interface is known from a separate heat-
transfer analysis, and one needs an estimate of the expected tem-
perature variation between two interfaces or even between two dif-
ferent evaporating and condensing sites on the same interface
separated by a distance d. This is plotted in Fig. 4 for a mixture of
hydrogen and helium gas for several values of q.

It is clear that the temperature gradient decreases rapidly by
many orders of magnitude as the amount of noncondensable gas
is reduced. In the opposite limit as X !1, it approaches a constant
maximum value as the effective thermal conductivity approaches
the constant km þ j. Note, in particular, that when q is small, the
temperature gradient remains small no matter how much noncon-
densable gas is present. In this case, the mass flux is heat-transfer
limited because there is insufficient energy for evaporation to pro-
ceed. However, when q is larger, the temperature gradient grows
Fig. 4. A plot of the expected temperature gradient versus mole ratio X for a
mixture of hydrogen and helium gas for several values of q (a) on a log — log plot, (b)
with linear axis scales.
rapidly with just a trace amount of noncondensable gas and is
not limited by the heat transfer as shown by the curves in Fig. 4b.

To better understand this behavior, consider the following
interpretation. When q is fixed, J is also essentially fixed as appar-
ent from Eq. (55) if the conductive term is neglected. However, J
can be decomposed into both convective and diffusive contribu-
tions as shown in Section 2.2, with the diffusive term becoming
more important as more noncondensable gas is added (decreasing
xÞ. Unlike the diffusive term, the convective term does not give
rise to mass fraction gradients. For small amounts of noncondens-
able gas, J is mostly convective, there is no significant mass fraction
gradient, and, hence, there is no significant temperature drop.
However, as the amount of noncondensable gas is increased, the
diffusive contribution becomes more important and large mass
fraction gradients are possible as long as there is sufficient energy
being supplied by q for evaporation. A large mass fraction gradient
gives rise to a vapor partial pressure gradient which, in turn, leads
to a larger interfacial temperature drop. In the limit of large
amounts of noncondensable gas ðx! 0 or X � 1Þ, the diffusive
term dominates as convection becomes negligible and all of the va-
por mass flux J is transported by diffusion. Thus, the temperature
drop approaches a constant value as X � 1.

Yet another way of rearranging Eq. (56) is to solve for the re-
quired mole ratio X that yields a desired temperature gradient if
the interfacial heat flux is known,

X ¼ j
q DT l=dð Þ�1 � km � j

¼ j
q� qmin

DT l

d
: ð62Þ

Obviously, this only makes sense if the denominator is positive,
which is just another way of stating the requirement that the tem-
perature gradient can never be greater than q=ðjþ kmÞ.

This approach can also provide some insight into the case of a
single interface undergoing simultaneous evaporation and conden-
sation at different sites on the interface separated by an average
distance d. This estimate of the interfacial temperature gradient
can be used along with knowledge of the temperature dependence
of the surface tension to assess the likelihood of experiencing
Marangoni convection under certain conditions. If the temperature
difference between the evaporating and condensing regions is DT l,
then the interfacial temperature gradient can be approximated by
DT l=d. The heat flux required to sustain this interfacial temperature
gradient can be estimated from Eq. (56). Thus, if the heat flux dif-
ferential is known and the mole ratio of the noncondensable gas is
X, then the interfacial temperature gradient can be predicted from
Eq. (61). If the heat flux differential and desired temperature inter-
facial gradient are known, then Eq. (62) can be used to predict the
required mole ratio.

In order to demonstrate the application of these equations in a
practical engineering situation, we will examine the cryogenic
storage of hydrogen in a tank pressurized with helium. The goal
is to determine the mole fraction of noncondensable gas (helium)
that can produce an interfacial temperature gradient of 1 K/cm,
which is potentially large enough to instigate Marangoni (sur-
face-tension driven) convection within the liquid. The subsequent
mixing effect could be used to destratify the liquid in the tank
without having to rely entirely upon an active mixing strategy
using inefficient pumps that are prone to failure.

Consider hydrogen at its normal boiling point. Using the value of
Dm computed earlier, we see that j ¼ 19363 erg=cmsK for the
hydrogen–helium mixture under these conditions, and if we as-
sume the mixture thermal conductivity is equal to that of pure
hydrogen vapor ðkm ¼ kv ¼ 1714 erg=cmsKÞ, then a minimum re-
quired heat flux of qmin ¼ 2:11 mW=cm2 is predicted from Eq.
(59). This is the minimum heat flux required to sustain a tempera-
ture gradient of DT l=d ¼ 1K=cm when there is a large amount of
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noncondensable gas present. If the actual interfacial heat flux dif-
ferential between evaporating and condensing regions were known
from a separate thermal analysis to be q ¼ 100 mW=cm2 (a value
much greater than qmin), then the noncondensable mole ratio re-
quired to sustain this temperature gradient is about X ¼ 0:02 as
predicted by Eq. (62). These values can also be obtained by just
visually inspecting Fig. 4.

It is instructive to compare the previous situation to the case
where there is only pure vapor present. In that case, we can neglect
the conductive contribution in Eq. (55) and just assume q � LJ, and
we can also use Eq. (50) for the pure vapor limit to estimate J. For
the example just considered, let’s assume T l0 ¼ 20:39 K and
T ld ¼ 19:39 K. The corresponding saturation pressures are
ps0 ¼ 1:01325� 106 dyn=cm2 and psd ¼ 0:77113� 106 dyn=cm2 as
computed from Eq. (21) using the properties in Table 1. Thus,
Dp0s ¼ 0:24. We also compute Ja0 ¼ 13:93 g=cm2 s from Eq. (20)
assuming a ¼ 1. Then, from the dimensional form of Eq. (50), we
find that J ¼ Ja0pDp0s=4 ¼ 2:63 g=cm2 s, from which it follows that
q ¼ LJ ¼ 1:2� 1010 erg=cm2 s ¼ 1200 W=cm2. This heat flux is
about 10,000 times larger than the heat flux predicted for the pre-
vious case where there was just 2% noncondensable gas present.
These two examples underscore the fact that it is very unlikely
to have any significant variation in the interfacial temperature in
the absence of a noncondensable gas.
5. Summary

The relationship describing mass flux as represented by Eq. (33)
identifies three distinct mass-transport regimes depending on the
relative magnitude of the characteristic noncondensable mole ratio
X as compared to the critical characteristic mole ratio Xc. When
X � Xc, the system is in a kinetically-limited regime where the mass
flux approaches an upper limit dictated by kinetic effects. When
Xc � X � 1, the kinetic effects become negligible and the mass
flux is determined by a combination of diffusive and convective
contributions with the diffusive contribution becoming more
important as X increases. Finally, when X � 1, the system is in a
diffusively-limited regime where the mass flux approaches another
constant value as the system becomes saturated with noncondens-
able gas.

A uniformly-valid approximation of Eq. (33) is also developed by
considering various limits of this equation in each regime. The result
is an explicit relationship for the mass flux as given by Eq. (52) that is
more amenable to efficient and quick engineering analysis in consid-
ering various design options. Numerical results indicate that the ex-
plicit approximation agrees very closely with the implicit
relationship over the entire range of X. It is expected that for most
engineering applications of interest in the field of cryogenic fluid
storage, the explicit relationship will yield satisfactory predictions.
In particular, this equation is used to derive useful relationships be-
tween the mole ratio, temperature difference and the required heat
flux as long as the mass flux is not in a kinetically-limited regime. For
most practical circumstances, the evaporative mass flux will be
many orders of magnitude less than its kinetic limit, so this relation-
ship is valid for many situations of interest.

Perhaps the most important practical consequence of this paper
is the prediction of an effective heat transfer coefficient between
the evaporating and condensing interfaces that relates the heat flux
to the temperature drop across the vapor gap, including contribu-
tions from both heat and mass transfer, as expressed by Eq. (58).

6. Conclusions

In this paper, a one-dimensional model of heat and mass
transport across a binary gas mixture between two planar evap-
orating and condensing interfaces held at different temperatures
is developed in order to examine the leading-order effects of a
noncondensable gas. This analysis accounts for vapor diffusion
through the noncondensable gas as well as the nonequilibrium
interfacial boundary conditions that become important if the
rate of evaporation approaches its kinetic limit. By balancing
the mass and energy fluxes between these interfaces, the prob-
lem is reduced to solving two implicitly-coupled, integro-alge-
braic equations given by Eqs. (22) and (23) for the two
unknowns J and �p. Invoking a reasonable assumption that the
temperature drop between the two interfaces is relatively small,
the system of equations is reduced to a single implicit relation-
ship for the mass flux given by Eq. (33).

Application of the relationships developed as part of this analy-
sis to a particular situation involving the cryogenic storage of li-
quid hydrogen has led to two important conclusions:

(1) In the absence of a noncondensable gas, the interfacial tem-
perature is uniform and equal to the saturation temperature.
In this case, an enormous heat flux is required to produce any
appreciable nonuniformity in the interfacial temperature.

(2) In the presence of even a minute amount of noncondensable
gas, temperature variations can be sustained between differ-
ent evaporating and condensing sites on the vapor–liquid
interface at quite moderate heat fluxes. In this situation, sur-
face-tension variations caused by the resulting interfacial
temperature gradients could potentially give rise to Marang-
oni convection that could be exploited to destratify the liquid.

The most important effects of the noncondensable gas are de-
scribed by a single parameter j defined by Eq. (57). This parameter
only depends on the noncondensable gas through the mass diffu-
sion coefficient. Because of its relative simplicity, Eq. (56) can be
manipulated in a variety of ways to be able to explicitly solve for
any variable of interest in terms of the other variables. In particu-
lar, the expected temperature variations generated along an inter-
face can be predicted using Eq. (61) if the surrounding thermal
field (heat fluxes) and noncondensable mole ratio are known.

Future improvements to this model that are currently in pro-
gress entail the incorporation of a more comprehensive kinetic
treatment of an evaporating interface, including the effects of the
noncondensable gas on the kinetics, which were not considered
in this work. In addition, a more rigorous analysis of the properties
of a multi-component mixture will also be incorporated to account
for departures from ideal gas behavior. It is understood that this
simple one-dimensional model has inherent limitations for pre-
dicting the precise quantitative behavior of real systems since
complex geometries, boundary conditions, and thermophysical
properties of the fluids and of the container walls and/or other
structures will inevitably come into play. Nevertheless, it is hoped
that this simple model will provide valuable quantitative insight
into the basic mechanisms at play and allow order of magnitude
estimates to be performed for quick engineering analysis and
judgment.
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